If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2-5n-1000=0
a = 1; b = -5; c = -1000;
Δ = b2-4ac
Δ = -52-4·1·(-1000)
Δ = 4025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4025}=\sqrt{25*161}=\sqrt{25}*\sqrt{161}=5\sqrt{161}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5\sqrt{161}}{2*1}=\frac{5-5\sqrt{161}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5\sqrt{161}}{2*1}=\frac{5+5\sqrt{161}}{2} $
| -(7r+3)=3(7-5r)+5r | | 8-(x+13)=1 | | 5=(1=2m)=1/2(8+20m) | | 5+x/6=7 | | 3(4x+5)=-39+6 | | -9x+20=-4(x+5) | | -35=m-9 | | 4(x+6)=18x+7 | | 2.6=-0-2t | | 2x+4=34x÷5 | | 15/4=60/t | | 3(u-3)=5u+11 | | 7b+8-10b=-2(b-4)-b | | 11y+47=135 | | x/0.75=8 | | 3(4y+5)=6(2y-4) | | -6a^2+54=0 | | y=0.1-0.005 | | 3.2=0.6x=13 | | 3(5x+5)=6-(x+7) | | 10+3/7x=25 | | 21=x/3+9 | | 3q+(-15)=24 | | 2–2n=3n+17 | | 9y-2×=7 | | g—(-31)=—7 | | 74x+25=400x+25 | | 144=8(-4n+2) | | 3x{^{3}}+2x^{2}-3x+6=0 | | 4x–8=2x+8–5x | | -4x+11=7x-22 | | -4x+11=7x-32 |